A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
- Both the left and right subtrees must also be binary search trees.
If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.
Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
1 2 |
7 8 6 5 7 10 8 11 |
Sample Output 1:
1 2 |
YES 5 7 6 8 11 10 8 |
Sample Input 2:
1 2 |
7 8 10 11 8 6 7 5 |
Sample Output 2:
1 2 |
YES 11 8 10 7 5 6 8 |
Sample Input 3:
1 2 |
7 8 6 8 5 10 9 11 |
Sample Output 3:
1 |
NO |
当时偷懒写了递归版……
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
#include<stdio.h> #include<stdlib.h> int check_bst(int *tree,int n) { int root,i,edge=-1; if(n<=1) { return 1; } root=tree[0]; for(i=1;i<n;i++) { if(tree[i]>=root) { edge=i; break; } } if(edge==-1) { edge=n; } for(i=edge;i<n;i++) { if(tree[i]<root) { return 0; } } return check_bst(tree+1,edge-1)&&check_bst(tree+edge,n-edge); } int check_mbst(int *tree,int n) { int root,i,edge=-1; if(n<=1) { return 1; } root=tree[0]; for(i=1;i<n;i++) { if(tree[i]<root) { edge=i; break; } } if(edge==-1) { edge=n; } for(i=edge;i<n;i++) { if(tree[i]>=root) { return 0; } } return check_mbst(tree+1,edge-1)&&check_mbst(tree+edge,n-edge); } int convert(int *tree,int n,int *flag) { int i,root,edge=-1; if(n==0) { return 0; } if(n==1) { if(*flag) { printf(" "); } else { *flag=1; } printf("%d",*tree); return 0; } root=tree[0]; for(i=1;i<n;i++) { if(tree[i]>=root) { edge=i; break; } } if(edge==-1) { edge=n; } convert(tree+1,edge-1,flag); convert(tree+edge,n-edge,flag); if(*flag) { printf(" "); } else { *flag=1; } printf("%d",*tree); return 0; } int convert_m(int *tree,int n,int *flag) { int i,root,edge=-1; if(n==0) { return 0; } if(n==1) { if(*flag) { printf(" "); } else { *flag=1; } printf("%d",*tree); return 0; } root=tree[0]; for(i=1;i<n;i++) { if(tree[i]<root) { edge=i; break; } } if(edge==-1) { edge=n; } convert_m(tree+1,edge-1,flag); convert_m(tree+edge,n-edge,flag); if(*flag) { printf(" "); } else { *flag=1; } printf("%d",*tree); return 0; } int main() { int n,*tree,i,flag=0; scanf("%d",&n); tree=(int *)malloc(n*sizeof(int)); for(i=0;i<n;i++) { scanf("%d",tree+i); } if(check_bst(tree,n)) { printf("YES\n"); convert(tree,n,&flag); } else if(check_mbst(tree,n)) { printf("YES\n"); convert_m(tree,n,&flag); } else { printf("NO\n"); } } |