When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A “social cluster” is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.

Input Specification:

Each input file contains one test case. For each test case, the first line contains a positive integer N (<=1000), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:

Ki: hi hi … hi[Ki]

where Ki (>0) is the number of hobbies, and hi[j] is the index of the j-th hobby, which is an integer in [1, 1000].

Output Specification:

For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

Sample Output:

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + … nK^P

where ni (i=1, … K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen — sequence { a1, a2, … aK } is said to be larger than { b1, b2, … bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL

If there is no solution, simple output “Impossible”.

Sample Input 1:

Sample Output 1:

Sample Input 2:

Sample Output 2:

## PAT-Advanced-1098. Insertion or Heap Sort

According to Wikipedia:

Insertion sort iterates, consuming one input element each repetition, and growing a sorted output list. Each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no input elements remain.

Heap sort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. it involves the use of a heap data structure rather than a linear-time search to find the maximum.

Now given the initial sequence of integers, together with a sequence which is a result of several iterations of some sorting method, can you tell which sorting method we are using?

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=100). Then in the next line, N integers are given as the initial sequence. The last line contains the partially sorted sequence of the N numbers. It is assumed that the target sequence is always ascending. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in the first line either “Insertion Sort” or “Heap Sort” to indicate the method used to obtain the partial result. Then run this method for one more iteration and output in the second line the resuling sequence. It is guaranteed that the answer is unique for each test case. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

Sample Output 1:

Sample Input 2:

Sample Output 2:

Given a singly linked list L with integer keys, you are supposed to remove the nodes with duplicated absolute values of the keys. That is, for each value K, only the first node of which the value or absolute value of its key equals K will be kept. At the mean time, all the removed nodes must be kept in a separate list. For example, given L being 21→-15→-15→-7→15, you must output 21→-15→-7, and the removed list -15→15.

Input Specification:

Each input file contains one test case. For each case, the first line contains the address of the first node, and a positive N (<= 105) which is the total number of nodes. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.

Then N lines follow, each describes a node in the format:

where Address is the position of the node, Key is an integer of which absolute value is no more than 104, and Next is the position of the next node.

Output Specification:

For each case, output the resulting linked list first, then the removed list. Each node occupies a line, and is printed in the same format as in the input.

Sample Input:

Sample Output:

Among all the factors of a positive integer N, there may exist several consecutive numbers. For example, 630 can be factored as 3*5*6*7, where 5, 6, and 7 are the three consecutive numbers. Now given any positive N, you are supposed to find the maximum number of consecutive factors, and list the smallest sequence of the consecutive factors.

Input Specification:

Each input file contains one test case, which gives the integer N (1<N<231).

Output Specification:

For each test case, print in the first line the maximum number of consecutive factors. Then in the second line, print the smallest sequence of the consecutive factors in the format “factor*factor*…*factor[k]”, where the factors are listed in increasing order, and 1 is NOT included.

Sample Input:

Sample Output:

Zhejiang University has 6 campuses and a lot of gates. From each gate we can collect the in/out times and the plate numbers of the cars crossing the gate. Now with all the information available, you are supposed to tell, at any specific time point, the number of cars parking on campus, and at the end of the day find the cars that have parked for the longest time period.

Input Specification:

Each input file contains one test case. Each case starts with two positive integers N (<= 10000), the number of records, and K (<= 80000) the number of queries. Then N lines follow, each gives a record in the format

plate_number hh:mm:ss status

where plate_number is a string of 7 English capital letters or 1-digit numbers; hh:mm:ss represents the time point in a day by hour:minute:second, with the earliest time being 00:00:00 and the latest 23:59:59; and status is either in or out.

Note that all times will be within a single day. Each “in” record is paired with the chronologically next record for the same car provided it is an “out” record. Any “in” records that are not paired with an “out” record are ignored, as are “out” records not paired with an “in” record. It is guaranteed that at least one car is well paired in the input, and no car is both “in” and “out” at the same moment. Times are recorded using a 24-hour clock.

Then K lines of queries follow, each gives a time point in the format hh:mm:ss. Note: the queries are given in ascending order of the times.

Output Specification:

For each query, output in a line the total number of cars parking on campus. The last line of output is supposed to give the plate number of the car that has parked for the longest time period, and the corresponding time length. If such a car is not unique, then output all of their plate numbers in a line in alphabetical order, separated by a space.

Sample Input:

Sample Output:

A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.

Input Specification:

Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:

ID K ID ID … ID[K]

where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID’s of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.

Sample Input:

Sample Output:

One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the results of image analysis in which the core regions are identified in each MRI slice, your job is to calculate the volume of the stroke core.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 positive integers: M, N, L and T, where M and N are the sizes of each slice (i.e. pixels of a slice are in an M by N matrix, and the maximum resolution is 1286 by 128); L (<=60) is the number of slices of a brain; and T is the integer threshold (i.e. if the volume of a connected core is less than T, then that core must not be counted).

Then L slices are given. Each slice is represented by an M by N matrix of 0’s and 1’s, where 1 represents a pixel of stroke, and 0 means normal. Since the thickness of a slice is a constant, we only have to count the number of 1’s to obtain the volume. However, there might be several separated core regions in a brain, and only those with their volumes no less than T are counted. Two pixels are “connected” and hence belong to the same region if they share a common side, as shown by Figure 1 where all the 6 red pixels are connected to the blue one. Figure 1
Output Specification:

For each case, output in a line the total volume of the stroke core.

Sample Input:

Sample Output:

（有更好的思路，不过段错误了，我改过后再发上来

## PAT-Advanced-1090. Highest Price in Supply Chain

A supply chain is a network of retailers（零售商）, distributors（经销商）, and suppliers（供应商）– everyone involved in moving a product from supplier to customer.

Starting from one root supplier, everyone on the chain buys products from one’s supplier in a price P and sell or distribute them in a price that is r% higher than P. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle.

Now given a supply chain, you are supposed to tell the highest price we can expect from some retailers.

Input Specification:

Each input file contains one test case. For each case, The first line contains three positive numbers: N (<=105), the total number of the members in the supply chain (and hence they are numbered from 0 to N-1); P, the price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then the next line contains N numbers, each number Si is the index of the supplier for the i-th member. Sroot for the root supplier is defined to be -1. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the highest price we can expect from some retailers, accurate up to 2 decimal places, and the number of retailers that sell at the highest price. There must be one space between the two numbers. It is guaranteed that the price will not exceed 1010.

Sample Input:

Sample Output:

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree. Figure 1
Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

Sample Output: